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ABSTRACT

Let M be a smooth n-dimensional manifold and let TH be its tangent

bundle. We consider a time periodic Lagrangian of period T,

Lt: TH R

and we seek T-periodic solutions of the Lagrange equations, which in local

coordinates are

d 3LL
(__) 2 (t,q,q) -L (t,q,4)- 0 i -n

Our main result states that if the fundamental group of M is finite, then

(*) has infinitely many T-periodic solutions, provided that I satisfies

certain physically reasonable assumptions.
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SIGNIFICANCE AND EXPLANATION

--- The question of existence and the number of periodic solutions of model

equations for a classical mechanical system is a problem as old as the field

of analytical mechanics itself. The development of the nonlinear functional

analysis has renewed interest in these problems.

In this paper we consider a mechanical system which is constrained to a

compact manifold M. We suppose that the dynamics of the system is described

by a T-periodic Lagrangian

It  TM R

which satisfies reasonable physical assumptions. The main result of this

paper is: If the fundamental group of the manifold M is finite, then the

Lagrangian nonlinear system of differential equations which describes the

dynamical system has infinitely many distinct periodic solutions.

The responsibility for the wording and views expressed in this descriptive
summary lies with NRC, and not with the author of this report.



PERIODIC SOLUTIONS OF LAGRANGIAN SYSTEMS ON A COMPACT MANIFOLD

Vieri Senci

INTRODUCTION

The existence and the number of periodic solutions of model equations for a classical

mechanical system is a problem as old as the field of analytical mechanics itself. The

development of the nonlinear functional analysis has renewed interest in these problems (we

refer to [R] for a recent bibliography on the subject).

In this paper we are interested in periodic solutions of prescribed period when the

system is constrained to a compact manifold. This fact allows us to use many tools

developed in the theory of closed geodesics on Riemannian compact manifolds (cf. [KD)° we

now describe our results.

Let M be a smooth n-dimensional manifold and let T be its tangent bundle. We

consider a time-dependent Lagrangian

L't 114 + R

We suppose that k is T-periodic in time and we seek T-periodic solution y(t) e m of

the corresponding dynamical system. We fix a finite Cm-atlas

(0.1)(a) A{U,* ,. for N

and the corresponding atlas

(0.1)(b) TA- {TU,T T1 for T4

So in local coordinates, our dynamical system is described by the following system of

second order differential equations:

aLX
(0.2) d X £l (t,qltl,4lr)) - 0

dt 3v (t~qltl, lt)) - q i

for i n 1, ...,n and y(t) e u,, t .

where

(0.3) L(t,q,v) - Lt 0 (T#-l(q,v) and (q(t),j(t)) - (T#

We shall suppose that T - 1 (if not it in sufficient to rescale the time) and we set

Sponsored by the United States Army under Contract no. DAAG29-80-C-0041.



8- /S so that we can regard a solution of (0.1) as a function y : M. We make

the following assumption on L

(L0 ) L t  is twice differentiable for I 1,...,N

There exists a constant c > 0 such that

M 1 ) (a) JL (t,q,v)l 4 c(1 + Ivl2(L1  () 3q i

(b) INL (t,q,v)l 4 c(1 + IvI)3 vi

M ) a) a2 L (t,q,v)l 4 c(I + v2

2
(b) I V~ L (t,q,v)l C W( + IvI)

2

(c) IVav vLt(t,qv)l 4 c

for i,j - 1,...,n and L -1,...,N.

L3 ) there exists a constant v > 0 such that

ii v vj Lwt>v)wi 
V  2  for - 1,...,N

i i

For example the Lagrangian defined by

L (tq~v t v + ib I(t,q)v + cl (t,q)

X 2 1satisfies (L1 ), L2 ) and (L3) if a t it b1 , c e c Cu and the matrix (a tq)) isis

positive infinite for every t e s and q e U .
We say that a periodic solution of (0.2) is homotopically trivial (reap. nontrivial),

if the map Y : S M N is homotopically trivial (resp. nontrivial).

The main result of this paper is the following one
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0.1 Theorem. suvoose that Lt satisfies (S ) ( 3 ) ' ha__n

i) for each conjugacy class of the fundamental group of N there exists at least a

homotopcally nontrIvial eriodic solution of (0.2)

ULi) if the fundamental group of N is finite, then there exist infinitely many

homotopically trivial periodic solutions of (0.2).

The result of Theorem (0.1) is optimal as the following example shows. Take

8- - I/g Lt - (...> where <*,*> is the standard RLumanLan structure on 8. Then

all the 1-periodic solutions of (0.2) have the form Y(t) - rt (r e z). Since

WI(S ) - , this simple example shows that

(i) to each conjugacy class of w1 (N] may correspond only one periodic solution

of (0.2).

(Li) if v 1 (K) is infinite we may not have any homotopically trivial periodic

solution of (0.2).

By Theorem 0.1 the following corollary follows

0.2 Corolla. If N is a Lie group (or more in general a H-space) then 0.2 has

infinitely many periodic solutions.

Proof. Under our assumptions wI () is an Abelian group. Then if it is infinite, the

conclusion follows by Theorem 0.1 Ci)i if it is finite, the conclusion follows from Theorem

0.1 (Li).

We thank R. 1adell and J. Nobbin for many useful conversations on this topic.
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1. DESCRIPIOror THE FUNCTION SPACES USED

Let N be a smooth compact manifold of dimension V and let

S- 1V = (0,11/{0.1}. For a e (1/2,+1) we set

As - W(S ,14)

where 11S(1,1) denotes the Sobolev space of functions y s S M N of order S. Since

there exists n' such that H C UP', the easiest way to define Ws(81,M) probably is the

following one:

U (1N) - {6 e K(Sl,1' )j
Y
(t ) 

e K for every t)

We remark that the above assumption makes sense. In fact since a > 1/2, by the Sobolev

embedding theorem, the function in s(S 1,X) are continuous. If a < 1/2 there is not

any reasonable definition (cf. e.g. (A).

01(91,m) can also be defined using the atlas (0.1)(a). We say that y e vs(Sl,n) if

1
for every interval T C S such that y(T) e U we have that

*.Yl1 : T + 1 is a function inV (S,e)y (U ,*L) • A

Palais has shown that the two definitions are equivalent (Pal. We will be interested in

the two cases when a 1 or a . In these cases we set

AK - WV (S ,M) - function with "square integrable derivative"

and

A m - 4(s,) - C S1, M) - functions continuous with all their derivatives.

It is well known that A I1 is a Hilbert manifold (cf. e.g. [Pal, [K, Wl). We also need

to use the space C(S ,M) of the continuous functions y : S
1 + N. We shall use the

following notation

Am - C(S ,M)

It is well known that AN is a Banach manifold (cf. e.g. [K]). Now consider the tangent

bundle Tm -- > M. For s e (1/2,-) and r 4 s define

TA, _ (E : S
I 

+ TM : t is a vector field

of class Wr along a curve y eA}

If we define a map : TA AM as follows

( )(t) = w(t(r)) for a.e. t e S1

-4-



it follows that {TrAMw.A 1} is a (infinite dimensional) vector bundle over AOK (cf.

[K] or [A) for proofs and details). In particular, for r - a, we obtain the tangent

bundle of AM. In this case we shall write simple TAN. Also we shall use the following

notation
TrAm .- (w-y 

I  
S C is a vector of class Wr along Y)

YY

T AsM = Ci)-y = ( SI  N JI is a vector of class We along Y)

Similarly we define

TAM ( S + MI is a continuous vector field along a curve y e AK)

T*ASM - S +M I C is a continuous vector field along a curve y e AOM} s > 1/2

By well known theorems on Sobolev spaces, we have that the embeddings.

T A N -> T A K -> T A K are continuous and the first one is also compact (for detail
Y Y Y

see e.g. K] or [A]). n order to make easier the computation in the following sections

it is useful to introduce a Riemann structure < , > on K. This structure permits to

define Hilbert structures on T A I and T A1 K as follow

1 0

<C'->0 
f  

<C(t),n(t)>ylt dt Cn e T0A I
0

11
< nI - I (<YVt)tlVt)t>'Vt) + <C (t)Inlt)tl> lt C,w e T A M

0 ' Y

where Vt denotes the covariant derivative. We shall use also the following notation

IM 0 - <CI) 0  (C e T AI K) and IC11 . <CIE> 1/2 e

We also define

IC&9 - [ sup <9(t), (t)> , ]/2 for C TAM
t( 0,1) Y(t) 'V

The above definition allow to define the following distances on A M

1
distI('Y ,Y 2 ) - mn f 1 (1I )ld

1
dist 0 (Yy 2 1 - min f *A()to dA

863 0

-5-
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where S is the set of curves BC(A) of class C I joining y~ and y and

It turns out that AMis a complete metric apace with respect to the distanced

Actually it is an infinite dimensional Riemann manifold with respect to the Riamann

structure and the topology induced by this Metric is the same given by the

definition (cf. [K] for proofs and details).

we also define for YV 6 e AN

dist,#(Y1 1 Y2) min f im *8( dA
Bft 0

where a3- (o e c I(0,11,A4) B (0) - 'Y10001) - 2

As expected it turns out that AN is a complete metric space with the distance

iiat #(v 1 Y2 ) and the topology given by this metric is the uniform convergence topology.

By virtue of the compactness of the embedding A I K -> AN the following result holds

(see [XI for details).

Lemms 1.1. If (Y n is a sequence in A H, bounded with respect to the metric d

then It has a subsequence converging in A.
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2.* ESTIMATES OF THEl ACTION FUNCTIONAL ON A K

At least formally, the solutions on (0.2) are the critical point of the action

functional

(2.1) f(y) 1 1, 0 Y dt

2
We shall show that the functional (2.1) is a functional of class C on A M. In this

section we shall prove this tact and we shall give som estimates to be used later.

In order to carry out this program it is useful to have nice local representations of

the quantity involved by means of the atlas (0.1)(a), Cb). in this way it will be possible

to exploit assumptions (LI), (L 2 ) and (L 3 ). For 'y e A N , we divide S1  in "intervals"

Tp(where p depends on Y) such that

Y~t) e u for t eT. t- '.p

where (U.00 is a chart of the atlas (0.1)(a). Then we set

(2.2) q, 1  Yk ~ £l...,p.

Clearly qe w (TiR ) and

(2.3) Iq I C

where c, is a constant which depends only on the atlas (0.1)(a). Moreover

i(t) e TO I for t e Ti and I - 1,...,p

then we set

=TO, I

Clearly we have

q

and

(2.5) ite L (Tilr)

I
if & eT A M, we have that

C(t) e Tut for t e T I and t 1,...,p

then we set

(2.5') (q~ L T~t EIT I for I

-7-



Dy the definition of T YA N we have that

(2.6) 6 q I e w IC(TIPR)

Moreover Pi e T 2U Iwhere T denotes the "double tangent" operator. So we can not

£2

(2.7) q SqV, 41 64~ T 0

Of course q and 4,defined by the above formula agree with qand 4,given by

(2.4) and

(2.8) 64 A- 6q e L 2 TitRn

1 1t

Definition 2.1. Given y e AMI and e T YA I , we shall call the functions

qj# 4. 6qt 6 (defined by (2.2), (2.4), (2.5') and (2.7)) a A-local representation of

ye iv E and j respectively. Also we shall call the corresponding functions L I(t~qiv)

for I -1,...,p (given by (0.3)) a A-local representation of ' corresponding to y.

Using a Ar-local representation of j and of k the functional (2.1) takes the

following form

(2.9) fNY) - f L I(t~q X(t),4 L(t))dt

Lemma 2.2 Let L Ibe a function given by (0.3) and set

(2.10) gt (q) f L it(t,q,4)dt

where T Iis a subinterval of [0,11. If L Isatisfies (L,), (L,) then g, ia

functional of class C 2on W (C,,,R7) with

(2.11) gj(q)[5 q] - ~I 13 (t,q,.4)6q + 'L (t,q,t4)64}dt

(2.12) 9;(q)[6qJ2 _ ji f fa 32 L(~,)q6 + 2 a2 avj)6 6

+ a L (t,q,)46 d
3V iva I



and the following inequalities are satisfied

2 2(2.13) q'(q)[8q) 2 cd(T I + Iqi )16q3
W (TVR ) WI (TI,Rtn

(2.14) g;(q)Cgq] 2 +q 2 )15q1
Cc2(Ir11 + I (TO0 n I11 n,

where c1  and c2  depend only on the constant c appearing in (L 2) and IT I is the

measure of I I.moreover if ML3 ) holds we have

(2.15) g;(q)[8q]2 )o ali (r,21 Aw) - WI tI+I 6q 1 1 n2

W (Tit W (TVL (TV10R

where the constants a and b depend only on the constants c and v appearing inL2

and L3 .

Proof. Clearly, (2.11) and (2.12) hold formally. Therefore we just have to prove

inequalities (2.13) and (2.14). In the following c3 i c4 1 ... will denote suitable

positive constants. By (L1)(a) we have

(2.16) If 9~ 8qdtl 4 c f (I + IjI2)I16qldt
3q iA

(c(IT II + Iqt 2 1 6qi

43(ITZ + Iq* 2 1 8qI

By MOW(b we have

(2.17) if 'Li 84 dtI -C c f (I + IjI)I64Idt
3v i TA

-C C(IrII + Eqi 1)(f 15q1 2 )1 /2  (by Schwartz inequality)
W TA

(c 4(IT II+ I 21 6qI

-9-



By (2.16) and (2.17), (2.13) follows.

By (L2 )(a) we have

2
(2.18) If 2L 6q aq dtI 4 c f (I + IjI2)1l2ft

T Lj qi i

4 c([Tit + Iq1
2
1)16q1

2 ,
W L

By (L2)(b) we have

(2.19) 2 If 9iv..6q i jdtl 4 2c f (1 + 1lI)16qIl Idt

4 2cldqi (f (1 + IcI)
2
dt)

112
(f 16j1

2
dt)

1/2  
(by Schwartz inequality)

L T I T I

C c4 (ITtI + Iqlw ).1 6 ql *1qlI1

By (L2 )(c) we have

I 3 2 L 6i<l t121

if Sq32  
66 i I C c16412 I

By the above inequality, (2.18) and (2.19), (2.14) follows.

By (L 3 ) we have

2

F f - L i- dt > vf 16 12

= v16q1
2
1 - 16q2 2  > v16q1

2
1 - 16ql 2

W L W L

By the above inequality, (2.19) and (2.18) we have

-10-



(2.20) g9()(Gq(q) 2 2 " 16 - -c4(Il'tl + Iql I )ql 1q1 1

- c(ITr + I q1
2 
1 )

16q 2

W L

Since

2 2 2 2

c4(IT I + Iqlwl)18ql '16ql 1 16qt2+ + i; c (IT I + Iq l)18q12l

S2 18ql 2 + c (IT I 
+ 

IqI21)18ql 2

(We have used the fact that IT 2 < IT1 4 1). Sy the above inequality and (2.20) we get

2 v 2 2 5 4 2g;(q) [8q] 2•218q12T I 1 ( + c 5 + CH(IT it + Iq1211)18qm L

2 V W L

By the above inequality, (2.14) follows. 0
2 ^1

Lemma 2.3. The functional f defined by (2.1) is a C -functional on A N. Moreover if

?, 8qJ is a local A-representation of Y and C we have

(2.21) f'(Y)EC -= (qI)[gl 1]

(2.22) f.y)[4 ]2 l - g;lqj
1t 
) q]2

where g is defined in lmma 2.2

Proof. Let O(A) (A e (u - c,u + c),c > 0) be a C
1
-curve in A N such that

d

0(0) - Y, x A(M) - C and let q1 , Sqt be a A-local representation of Y and C.

Then, using (2.9) and lemma 2.2 we get

d

d 2 2 I)8q2] 2

The above formulas prove (2.21) and (2.22). 0

In carring out our estimates on the functional f it is useful to make use of the

Riemann structure <,> on M which, as we have seen in Section 1, induces a infinite

dimensional Riemann structure <,*> on A M.

-11-



(2.20) g"(q) [ql 2 ) vlq1
2
1 - t1q 2* - c4(ITIr + IqI 1  6q1 I

W L V L IN

- c(Ir1LI + Iq1
2
1 )18q1

2
m

2 2

Since

v 2 1 '2 2 2
c4(ITI + Iql )1ql 18ql ( -

16q l  + 1 c(IT + Iq )216q2
4 A I L 1 2 1 2v 4I1 L

4 2 18ql 2 + C5(IT1I + Iql2 
)1

2
q 12

2 1  5 L

(We have used the fact that ITt1
2 

< ITtI 1 1). By the above inequality and (2.20) we get

q;
(q ) [

8
q ]

2 V y 1 2ql2 - 01 + c5 + CHITI + Iq1
2
1 )15ql 

2

By the above inequality, (2.14) follows. 0

Lema 2.3. The functional f defined by (2.1) is a C
2
-functional on A IN. Moreover if

qt, 6qi is a local A-representation of an C C we have

(2.21) f'(y)(C] - gqj(t1p]

(2.22) f"( ) 
2  I t. g (q1 )(,qt ]

2

where gt i. defined in lema 2.2

Proof. Let O(X) (A e (u - £,u + c),e > 0) be a Ce-curve in A K such that
d

0(0) - y, RM() " C and let q1 , 6q be a A-local representation of Y and C.

Then, usinq (2.9) and lmma 2.2 we get

d
TX- f(B(.%))(A. 0 - 'q~q)8

d ,q tql 2
-5 f(B(X))X~ - lq(t

The above formulas prove (2.21) and (2.22). 0

In carring out our estimates on the functional f it is useful to make use of the

Riemann structure <,> on M which, as we have seen in Section 1, induces a infinite

dimensional Riemann structure <''> on A 1M.

-11-



Strictly related to <*,'>,* there is the functional (called energy functional)

(2.23) M(Y) 1-j f (i,i~dt21

Using a A-local representation, (2.23) takes the form

(2.24) (Y) - I I. f 1, 1 1qt)qiq£,jdt
2 -1 T ig

where q1 I. is a A-local representation of i and {gij) is the metric tensor in the

local coordinates of the chart {U1,*fI. 3(y) is a particular case of the functional

(2.1) when Lt tt - >,P. So, by lama 2.3 it follows that 3(y) is a C
2
-function of

A IM.

leAma 2.4. There exist constants a1 and b1  such that

I 9(y) - b 1 4 f(y) -9 all(y) + b 1a1

Proof. Let LA be a local representation of It given by (0.3). For I - 1,...,N we

have

A 3L
L (t,q,v) = L (tqv) + - (t£q'u)v, + -(t,qO V)vieVj

where e (0,1).

By the above formula, the compactness of M, and (L3 ) we get

L (t,q,v) ) - c1 - c 2 IvI + . Iv 
2 

) 1vl 2 - b

where c1l, c2 and b, are suitable constants.

If g I is the metric tensor of <,> in the chart U, by the above inequality we

get

L,(t,q,v) • I. gJ(q)vvJ - c 3  A ""

where a1  is a suitable constant.

-12-



The above inequality can be written as follows

Lt(t) b ,(,C> - for every C e 7H
a aI

Taking y e A1N, I - i. integrating by the above inequality we get

f(y) - j Lt (lt))dt ) - f < t
' j > dt - b, - (Y) - b

The other inequality can be obtained in an analogous way. 0

The following 1emma establishes estimates between intrinsic quantities and the

corresponding quantities given by a A-local representation.

Lema 2.5. It y, to q, j, 6q, 6j as in Definition 2.1. Then there exists a constant

N depending only on A and <oo such that

(2.25) £ Iql
2 1 M(1 + 3(y))
- (TVin)

(2.26) 18ql 4 lUCIt 2 -

(2.27) 1 6q2 n 1 l~l - MR(Y)IlC

A I (TI,1) #

Proof. By (2.3) we have Iq[(t) • c1 for every t e Tr (a T l,...tp). Then

(2.28) ql L2 (To ) ItiIc1

Since the atlas (0.2) is finite there is a constant c2 such that

Ij (t)1 2 ( A -

where g9j is the metric tensor.

Then we have

(2.29) f I4Idt 4 c2  f (

A A2 1 ', >- c23()

-13-



By (2.28) and (2.29), (2.25) follows.

lor t e T w we have
gt3 (q) 6q,(t)8q1 (t)

then there is a constant c 3  such that

1 q (0ll2 4 <C(t)AW(t). 4 c 3 I1q (tI 2

By the first of the above inequality (2.26) follovas by the second we get

(2.30) f <4(t),&(t)>dt 4. c$ 3t 16ql 2( i,

For t e T I we have

(2.31) 9 1 (q)Vt6q V d,

where Vt  denotes the coveriant derivative:

(2.32) V 6qyi - t + 1h,k ri .
t j ithk(qtlqL,h~qtl k

where rhi are the Christoffel symbols relative to the chart U Then by (2.31) and
t , hk

(2.32) we get

<1,1> , c4 1i1 I 2 
- c5 litI1q t

So integrating we get

E(MM¥ f <1,1>dt ;, c 4 If 18q 1 221 t
o n

) " cS it tJ IIItol RlqlwI , I ne)
4,)d (T L (Tits

Using (2.25) and (2.26), (2.27) follows. 0

Lema 2.6. There are constants a2, b2  such that

2 1 2 +2
f*(Y)tU ) aII -t b 2 "+ U(y))1CS8#a2

Proof. Using (2.22) and (2.15) we get

1=1 w ( 2R W I b I + Iqt 2 1  )§6 1 2
L.1 (' Rf) L (Tin )

Then by (2.25) and (2.26) we get

-14-



I # 0# ,

a Il12 - m'a'b + bN19I321 I( + (y)))

N 1 ICE#- IC12 _(H + b 2)MY)ItoI2 + (bN + bpi2),4,2

The conclusion follows with a2 - - and b2 uxm(b,I)(N + 2). 0

Lea 2.7. Let 0 C(0,1 A1 N be a curve of class C1 , Then

(a) 1- I(S(OM) 4 29(0(k)))1/21 l.i

(b) d X(O(M))/ 4 I;(MI1

I I

(c) f u(() ))I/2d4  ( dI where d- Ia(A)IdX
0 0

(d) '3(M(O)) () dist1CB(0),0(1)) 4 d8

(e) if (Yn) is a seguence such that I(CY) is bounded. then there Is a subemae

Y. converins in An.

Proof. (a) Define 6 1 [0,11 x 8 1 + A N as follows
B(J,t) - 1(M)(t)

Then we have

d C(()) I 1 d 1

0
1

- 0 ()t 6,Y tOfIt (VI denotes the coverant derivative)
0

U ( <V x3t8,VAt6>dt)5/2.(f < t i3t62dt)l/2 (by the Ichwrt. ineqality)
0 0

C 21(k)E1 ( /2))1/

(b) follows directly by (a).

(c) follows integrating (b)

(d) follows by (b) and the definition of dist1 (*,.)

-15-



coe )l byon (o)lweagot tat the sequence (yn is bounded in the metric 0,1> I* The

wher" P in small enough in order that the Rismann sphere 8 (x) is geodeslcally onuvex

for every x e M. By virtue of the ompactness of K and a vell known theorem of J.

Whitehead such p exists, let 8 : 10, 1] x 8* 14 be a function much that

(a) 6(0,t) a 0 (tWI 601 t) - It

(2.34) (b) X. + 6(k~t) is the shortest geodesic joining Y,(t) and ,t

paramtrited with the arc length

by our assumnption on P, 8 is wail defined. The fn.-tion 8 defines a C I-curve

0 (0,I) * A IN in a natural way

(2.35) (6(X))(t) - 6(l,t)

Loom 2.8. let 5 be the curve defined by (2.3S). Theu

dB()1 4 (0 + a0 d 2)d5  f~or every x e (0.11

1 0 1

where i(00 A- 5(), d, . dist ( 0 Y 1 ). d5 - I ' 1,' X sa s is a constant which

depends only on the Nismann manifold(N(*.

3smark. in a linear apace, where the tangent space can be identified with the space itself

e have 0(k) - (I - X)yO + AYI. Then lime,1 . my1I - YO 11. . TAma 2.8 says that

lS1iml. in our situation, is not equal to do* but it can be nicely estimated.

Proof. Dy (2.34)(b) it follows that

(2.36) V 43 A (k,t) - 0 for every t es

(2.37) 0 ,38 dist(y (( t )t) ) 2 d*a for every t e 8

we have
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(238 A-*() 1/2 d li* )2(2.36) d 5111- 15((3) =

,1 A- {<V t' a6,Vat6> + <36,318)dt =

II()I s  0

I I t( 1A 6) A a + V A A6 ,3 A 8 ) d t =

0

f <V VtaI'vt ,X at6>dt by (2.36)Ia(1)E! 0

Dy a well known formula of Riemannian geometry, if v is any vector field along 6, we

have

(2.39) V Vtv - VtVXv - R6 (at6,3 X)v

where R is the Riemann curvature tensor. Moreover since our manifold N is compact,

there exists a constant a0 such that

(2.40) <R(v 1 ,v 2 )v3 ,v4 > ( a0 1v1 Ie2-I.v 3 l- 4IV

where v e TiN and Jv I - <v,,v >. By (2.38), applying (2.39) with v - a 6 we get
11

i ~iI

(2.41) d_ i 1 I {<V j 8,V a 8> - CRO 8,3 03 6,V a 0>} l
d% I dooI.lI)1  0 t X t A A A t

aO

-C d(ol I (f It 6,2dt)1/2(f IV A3t 612 dt)
1/2

(by (2.37) and the Schwartz inequality)

C a 0d 3((1))1  (by the definition of 10(X)1 and 9(M))

By the above formula we get
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,i ,,l- ii , iaA-I ( tI I

2 1 24a #  f C((()) ( a(dd4 (by lm ma  2.7(c).)
0

Then, integrating the above formula in du we get

IW([)e- d 4 a d 2d
0 0#0

which prove* the le mm. 0

-18-
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3. THI TOPOWGY OF A K

The topology of A 1 is strictly related to the topology of ANY in fact we have the

following theorem

Theorem 3.1. Th* embedding

i s A 1 + An

is a homotopy equivalence.

Proof. See [X] Th. 1.2.10. 0l

For our purposes, by virtue of Theorem 3.1 it is enough to study the topology of AN.

We have the following results of Vigue-Poirrier and Sullivan:

Theorem 3.2. If II(H) = 0 there exists an infinite set of positive integer

QC U

such that

Hq(AN) * 0 for every q e Q

where Hq (AN) is the cohomology ring with real coefficients.

Proof. If the cohomolgy algebra H*(N) requires at least two generators, then the result

follows from the main theorem of [V.P.S.] on page 637.

If H*() has only one generator, the result follows from the Addendum of [V.P.8] on

page 643. 0

By the above theorem and theorem 3.1, the following corollary follows

Corollary 3.3. Under the same assuptions of theorem 3.2

H (A1H) * 0 for every q Qq

Now let 0 > 0 be mall enough in order that the Riemann sphere S (x) is geodesically

convex for every x @ M. We set

(3.1) 3 - {y e AIMI(y) < C}c

The following result holds.

Theorem 3.4. Ec  is homotopically equivalent to a Manifold N of dimension less or equal

to (dim 4)C( + 1).

Proof. The proof is essentially the same of the proof of Theorem 16.2 of Milnor (N).

Actually instead of using the manifold A 1, he uses the (non-complete) manifold of broken
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geodesics, but its proof can be adapted to our situation without major changes. We shall

give a sketch of it. Let S x) be the Riemann ball of radius p and center x. By
0

virtue of the compactness of N and well known theorems, it is possible to choose P

small enough in order that S x) is geodesically convex for every x e N. We now setp

zc - fy e ac l tt 1 ,ti |  is a geodesic for i

where tl - - and N satisfies 6 4 N 4 L + 1. Notice that, by virtue of our

restriction on N, if Y e 0 c , y(Cti-I't] ) in contained in S pX) for some x e M.

Now we want to show that i is a finite dimensional manifold. To do this we set
c

A = {(Xl ..... xN) e 1N dist(xi.lXi) < 0 i I

and consider the map

w : A.3
c

defined as follows

WX,., y ' with y(t i ) " i

This map is obviously continuous since xi_ 1 and xi belong to S Px) for some x e N

and since S x) is geodesically convex, the (unique) geodesic which join x_ 1  and xi

depends continuously on xi and xi+ 1. Moreover it is invertible, in fact

"-Il(Y) - Myt Il,...,ylt Nl) •-1-

This proves that c is a manifold of dimension (dim + 1) where (al denotes the

integer part of a. The next step will be to prove the U is a deformation retract of

The retraction r : [0, 1 x z c is defined as follows

(the unique geodesic joining Y(ti) with y(t i + X) for t e [t i,ti + X]

-(t) for t e ti  + ,t i+ 1 ] i - 0,...,N - I .

If you remember that t I -, the above definition makes sense for % e [0, -1]. Clearly

- Y and r(!, t) e " Moreover, it is easy to see that r is continuous in

N c

[0, x A1  and it is equal to the identity for y e c. This proves the theorem. 0

By Theorem 3.4 the following conclusion follows straightforward.

Corollary 3.5. Hk(Zc) - 0 for k > (dis M)[ * J.
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4. T3 MAIN RESULTS.

We recall the well known assuaption (c) of Palais and Smale (which will call P.S.)

Definition 4.1. Let X be a Riumann manifold modelled on an Hilbert space and let

f e C I(X,R). We say that (X,f} satisfies P.S. if any sequence Yn X such that

f(Y n) + c and Vf(Yn ) + 0 has a converging subsequence.

The above condition is used to prove the following well known theorem:

Theorem 4.2. Let (Xf) satisfy P.S. and let r be a family of subsets of X such that

(a) A e r such that fJA is bounded from above.

(b) V A e r f1A )c onst.

(c) if ni is a deformation of X, (i.e. it is a homeomorphism on X homotopic to

the identity) then A 6 r if and only if (A) e r.

Under such assmption

c - inf sup f(y)

Atem yeA

is well defined and it is a critical value of f.

Our goal is to apply theorem 4.2 to the couple {A Mf} where f is defined by

(2.1). The first step is to prove the following lemma.

Lemma 4.3. {A M,f) satisfies P.S.

Proof. First of all we remark that Vf, given by the formula

Vf(y),4>1 - f,(y)[]

is well defined and continuous by lemma 2.3. Now let {yn } 
be a sequence such that

(a) fln ) + c

(4.1)

(b) Vf(yft) + 0

By (4.1)(a) and lemma 2.4, it follows that E(y n ) is bounded. So by lemma 2.7(e), we can

consider a subsequence which is a Cauchy sequence in AN. We shall denote this subsequence

again with Y n We want to show that {Y I is a Cauchy sequence in A M. We chose

e > 0 and N large enough in order that, for mn 0 N we have
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(a) IVfn(y )I C
n a2

(4.2)

(b) d #~ (Y n mn(p. ' a b ( 4 - b)
/0 I2 2 22

where Z - sup Yn ) P, a0, a2  and b2  are the constants appearing in (2.33) and lmmas
new

112.8 and 2.6. Now lot 0 [0,11 + A N be a curve defined by (2.35) and (2.34 with

8(0) = y and )1) = Y Moreover set, as in lemma 2.8 dB f IlM3, 1 ld3d and
0

d# = dist #(Y nY m). Clearly we have

#

and by lemma 2.6 we have

(4.2') f(MAM i(A)12 ). I6(i E - b 2 0 + 3(A)

So we have

(4.3) d i(X)12dA (by Schwartz inequality)

1 2

f a2 0 2 ((-) + a2b2d (1 + * (O())))d) (by (4.2'))0 dX2

2+ 2
f a2 (I<Vf(Ym),(0)>I + I<Vf(y M),(1)>I) + a2 b2 d# + a2b2d# 11 E(B))d.

0

(by an inteqration in X)

Also we have

(4.4) a2 (I<Vf(Y ),()> + I<Vfy M),(11m)I)I(

a 2 (lvf' (y )I.li8(0 + IVf(Y )II(1I

2a a- - . (I + a0d2)d 8  (by (4.2)(a) and lema 2.8)

S * d 0 (by (4.2)(b))

1 2 +

480

Also we have
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(4.5) 3(0(1)) -2( + f 2 3(0( ))dT
n 0 d

1
+ 2 f /(2())I/2

10(T)Idr (by lemma 2.7(a) and the definition of 3)

0

2 1

+ 2(1 + a0 d 2)d f ) , 1(l/2dmma 2.8)~ r (by aa2 )
0

2 2

+ 2(1 + a d )d (by les 2.7(c))
0 0 0

4 4d2 (by 4.2(b))0

So by (4.3), (4.4), (4.5) and (4.2) we get

2 12 +2 2 2 2 1 2 1 2 1 2d 4 -' d e + a"2 d + a b2d + 4a"b2db C j d + U d + d do + 3c
d 4d + adb 0  220 0 4 2 2 20

Thus
2

d 2C Ge0

Since dB ) dist 1(YnfyM), by the arbitrariness of C the conclusion follows. 0

For any set A C AIM let i : A + A IK denote the natural embedding and let

o A : Hk(AIM) Hk (A) induced homosorphism. let Q be the set defined in Theoremk,A

3.2. Then for every k e Q we set

(4.6) rk  ( (A e A i *,A  0}

Theorem 4.3 If W l(M) - 0, for every k e Q, the number

c k - inf sup f(y)
Aer yeA

is well defined and it is a critical value of f. Moreover,

(4.7) lia cs +c

keQ

Proof. In order to prove the first part of the theorem, it is sufficient to apply Theorem

4.2 with X - A IM. (A IM,f) satisfies P.S. by lemma 4.3. By corollary 3.3 it follows

that the sets k(k e N) are not empty and contain compact sets (in fact they contain the

support of k-chains which are not homologous to a constant). Then the assumption (a) of
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Theorem 4.2 is satisfied. By virtue of lemma 2.4, f is bounded from below on A M. Then

assumption (b) follows. Assumption (c) follows from the fact that n induces a

isomorphiem nl which makes the following diagram to commute:

H k(A M)

ikA /kn(A)

H k(A) _ _ _ Hk (nA))

*0 if and only if 0. So, by Theorem 4.2, the first

part of Theorem 4.3 follows. In order to prove (4.7), we fix k e Q, C > 0 and we take

e r k  such that

suL f(n) ( c k + £

yeA

For Y e A, by lema 2.4, it follows that

(y) ( a2 f(y) + b2 = a2 (ck + e) + b2

i
So, setting c a 2(c k + c) + b2, we have that A L4 c  where c is defined b

(3.1). Then we obtain the following comutative diagram

*

H k(AIM) A H k(i)

'21 - 1S

H 
k (LPc )

where i 2 : A I AIN is the embedding. Since A e r , i * Os then 1
0
* 0.

2 c Ai,k

Therefore Hk(Sc) * 0. Then by Corollary 3.5 it follows that

k <di + 1
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Then by the definition of c, we obtain that

k2 2

> 2 - N (M is a positive constant).
(dim M)

This proven (4.7). 0

Proof of Theore 0.1. (a) A connected component of AM corresponds to every conjugacy

class a of W WN) and by virtue of Theorem 3.1, a connected component C(o) of A M.

Define

c - inf f(')
Ye(Qyea a

Since (AI M,f) satisfy P.S., then ca  Is a minimum and, of course, it is a critical value

of f. Moreover, if a * a', the critical points of f are distinct since they belong to

different connected components.

(b) If 1(M) - 0, then the conclusion follows by Theorem 4.3.

Otherwise consider the universal covering space ; -!> M. Since v 1M is finite, ; is

compact. Let L(t) - L(t) - TV for every t e (0,11. Then ; and L(t) satisfy the

assumptions of Theorem 4.3. Therefore there are infinitely many periodic orbit

k of L(t). Clearly Tyk is a periodic orbit of L(t), and by its construction it is

homotopically trivial. 0
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